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SUMMARY

Theoretical aspects of a new capability to determine the
vibratory response of turbosystems subjected to aerodynamic

excitation are presented.

Turbosystems such as advanced turbopropellers with highly
swept blades, and axial-flow compressors and turbines can be
analyzed using this capability. The capability has been
developed and implemented in the April 1984 release of the

general purpose finite element program NASTRAN.

The dynamic response problem is addressed in terms of the
normal modal coordinates of these tuned rotating cyclic
structures. Both rigid and flexible hubs/disks are considered.
Coriolis and centriéetal accelerations, as well as differential

stiffness effects are included.

Generally non-uniform steady inflow fields and uniform flow
fields arbitrarily inclined at small angles with respect to the
axis of rotation of the turbosystem are considered as the sources
of aerodynamic excitation. The spatial non-uniformities are
considered to be small deviations from a principally uniform
inflow. Subsonic and supersonic relative inflows are addressed,

with provision for linearly interpolating transonic airloads.

A stand-alone pre-processor program, independent of NASTRAN,
has been additionally developed to generate the vibratory

airloads on the blades of these turbosystems.



Both NASTRAN and pre-processor capabilities are operational on

the CRAY 1-S computer system at NASA's Lewis Research Center.

The work was conducted under Contract NAS3-24387 from NASA

LeRC, Cleveland, Ohio, with Mrs. Marsha Nall as the Program

Monitor.
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1. INTRODUCTION

In a series of related efforts, NASA's Lewis Research Center
has sponsored the development of a number of analytical
capabilities addressing the static and dynamic problems of
axial-flow turbomachines. To benefit from the state-of-the-art
structural modelling and analyses techniques, these analytical
developments have been implemented in the general purpose finite
element program NASTRAN. These additional capabilities in
NASTRAN, based on a unified approach to representing and
integrating the structural and aerodynamic aspects of the

turbomachinery problems, are listed below:

1. Static aerothermoelastic design/analysis of axial-flow

compressors (Refs. 1-3),

2. Modal flutter analysis of axial-flow turbomachines (Refs.

1—3) 1]

3. Forced vibration analysis of rotating cyclic structures,

direct approach (Refs. 4,5), and

4. Modal flutter analysis of advanced turboprops with highly
swept blades (Refs. 6,7).

The new capability discussed in this report for modal forced

vibration analysis of aerodynamically excited turbosystems,

1. extends the direct (as compared to modal) approach forced

vibration analysis capability listed above to treat the



dynamic response problem in terms of natural modal
coordinates of the rotating cyclic structure of the

turbosystem,

2. draws upon, and extends, the turboprop flutter analysis
capability listed above for the generation of reactionary
aerodynamic forces due to the vibratory motion of the

turbosystem blades, and

3. requires the specification of imposed oscillatory airloads on
the turbosystem. (As per NASA's requirements, the generation
of oscillatory airloads for the purposes of the present
contract has been accomplished by the development of an
independent pre-processor program discussed in detail in Ref.

8 and briefly in Section 3 of this report.)

Mathematical description of the problem and its solution are

presented in Section 2.

Application examples on two advanced turboprops at various

operating conditions are given in Section 4.

Section 5 presents and discusses the results of Section 4
examples. Conclusions and recommendations are reported in

Sections 6 and 7, respectively.



2. MATHEMATICAL FORMULATIONS

2.1 PROBLEM DESCRIPTION

Figure 2.1 shows a single-rotation advanced turboprop, as an
example of turbosystems, operating in a generally non-uniform

steady inflow field.

Although the absolute inflow field does not change with time,
the rotation of the turboprop results in velocities with
oscillatory components relative to the blades. Relative
velocities with harmonic components at the rotational frequency
also exist in uniform flow fields when the turboprop axis of

rotation is misaligned with the absolute flow direction.
Given such operating conditions, it is desired to,

l. determine the oscillatory loading distributions over the
blades of the turboprop at various excitation frequencies,

and

2. determine the resulting vibratory response (displacements,

stresses, etc.) of the turboprop.

2.2 APPROACH

Due to its eventual implementation as part of the Bladed
Shrouded Disks Computer Program in NASTRAN at NASA LeRC, the

approach adopted for the formulation and solution of the above



Figure 2.1

Spatially Non-uniform

\ Steady Tunnel Flow

Advanced Turboprop in a
Generally Non-Uniform Steady
Inflow Field



problem is derived from those described in Refs. 4 and 6.

The following structural and aerodynamic aspects are

considered in the theoretical development:

Structural Aspects

l. Structural representation

— Structures of turbosystems are treated as tuned cyclic
structures with identical mass, stiffness, damping, and
constraint'properties for all cyclic sectors. The
structural modelling capabilities of NASTRAN for

rotationally cyclic structures are admitted.
2. Hub flexibility in relation to that of blades

= A relatively rigid hub effectively decouples the
structural behavior of the blades, any one of which can
then be modelled as an independent structural member
coupled only aerodynamically with the other blades of

the turboprop.

= A hub of stiffness comparable to that of blades
structurally couples the blades, in addition to their
aerodynamic coupling. The structural behavior of the
multi-bladed turboprop as a whole, as opposed to that of
an individual blade, then influences the dynamic
response of the turboprop. From a structural modelling

viewpoint, however, with the use of analysis invoking



cyclic symmetry features (Ref. 4), it still suffices to

model only a one-bladed segment of the turboprop.
3. Differential (or incremental) stiffness

- The steady state loads, particularly centrifugal loads,
acting on the relatively thin blades of advanced
turbopropellers noticeably affect the geometry and
effective stiffness of the blades. This, in turn,
alters the relative inflow conditions at the blade
leading edge, and also influences the natural
frequencies of the turbopropeller blades at any
operating condition. In general, the significance of
the differential stiffness effects decreases with

decreased rotational speed and increased elastic

stiffness of the structure.
4. Coriolis and centripetal acceleration effects

- These effects are present during vibrations of rotating
turboprops, and are accounted for in the forced
vibration analysis capability of the Bladed Disks

Computer Program.

5. Use of normal modes of the turboprop in formulating and

solving the dynamic response problem

- The normal modes of tuned cyclic turbosystems can be
grouped in mutually independent families corresponding
to permissible circumferential harmonic indices. Hence,

the total response of the turbosystem can be obtained by



combining the mutually independent responses for each of

the applicable circumferential harmonics.

Aerodynamic Aspects

l. Aerodynamic modelling

- This is essentially dictated by the unsteady aerodynamic
theories used to determine the unsteady blade loading
distribution. The Bladed Disks Computer Program
presently utilizes two-dimensional cascade aerodynamics
in a strip theory manner. The blade model, accordingly,
is a series of chordwise strips stacked spanwise to

cover the entire blade surface as shown in (Figure 2.2).

2. Two-dimensional cascade aerodynamics for oscillatory blade

motion

- Subsonic and supersonic aerodynamic routines, currently
part of the Bladed Disks Computer Program, with
modifications to account for blade sweep, if present,
are used to generate the reactionary aerodynamic blade

loading distributions.

3. Two-dimensional cascade aerodynamics for oscillatory relative

inflow

— Versions of subsonic and supersonic routines capable of
handling oscillatory relative inflow conditions are used

to generate the imposed aerodynamic loads on turbosystem
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blades.

4. Transonic aerodynamics

- For both oscillatory blade motion and oscillatory
relative inflow conditions, in the absence of
corresponding two-dimensional transonic aerodynamic
theories, the transonic blade loads are obtained by
interpolating between subsonic and supersonic loads.
For transonic relative Mach numbers at blade tip, the

subsonic loads are extrapolated.

5. Causes of aerodynamic excitation

- These are as described in Section 2.1, Problem

Description.

6. AReroelastic stability at a given operating condition

- To ascertain that the dynamic response calculations are
carried out at aeroelastically stable operating
conditions, the modal flutter analysis capability of the
present Bladed Disks Computer Program for advanced

turbopropellers (Refs. 6 and 7) is used.

2.3 COORDINATE SYSTEMS

In order to conveniently pose and solve the aerodynamically
forced vibration problem of turbosystems, a number of coordinate

systems have been defined. Fiqure 2.3 illustrates these
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coordinate systems for an advanced turbopropeller with its axis

of rotation mounted at an angle with respect to the tunnel mean

flow.

Each of these coordinate systems is described as follows:

x.‘.YTZ.r Tunnel coordinate system

This is defined to conveniently specify the velocity
components of the spatially non-uniform tunnel free
stream. It can be suitably oriented based on the
available tunnel data. 1In the special case of
aerodynamic excitation in uniform inflow, the tunnel
coordinate system is oriented such that the szj_plane
is parallel to the XIZI_plane of the inertial
coordinate system as shown in Figure 2.4. The origin of
the XTYTZT system is arbitrarily located. The
inclination angle of the turbosystem axis of rotation
with respect to the tunnel flow also lies in a plane
parallel to X;Z, plane. The uniform flow is directed

along +X_ axis.

X Y 2, Inertial coordinate system

In the present problem, this coordinate system is used
to relate the quantities in the tunnel and the basic
coordinate systems. The orientation of this coordinate
system is completely arbitrary except for the Xs axis
to be parallel to, and in the direction of, Xy axis of

the basic coordinate system described next. The zero

11
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reference for time/phase measurements is defined when
the inertial and the basic coordinate systems are

parallel.

All of the following NASTRAN coordinate systems are fixed to

the rotating turbosystem.
- XBYBZB Basic coordinate system

* This coordinate system has its XB axis coincident with
the turbosystem axis of rotation, and directed
aftward. Location of the origin is arbitrary. The
XBZB plane contains (approximately) the maximum
planform of the modelled blade. The definition of this
coordinate system is consistent with the theoretical
developments of the 2-d cascade unsteady aerodynamics
presently incorporated in the Bladed Disks Computer

Program (Ref. 6).

- XSYSZS (Blade) shank-fixed coordinate system

* The principal advantage of this shank-fixed coordinate
system is in modelling changes in the blade setting
angles by a simple 3 x 3 transformation matrix relating
to the basic coordinate systen. ZS coincides with the
blade shank axis. The definition of the coordinate

system otherwise is arbitrary.

XGYGZG Grid point location and displacement coordinate

systems

13



* Any number of such rectangular, cylindrical, or
spherical coordinate systems can be completely
arbitrarily defined to locate grid points of the
NASTRAN model, as well as request output at these grid
points. All of the XGIY&ZG coordinate systems used for
output requests collectively form the NASTRAN global

coordinates system.

- e

xgyiié Internally generated coordinate system on swept

chord s

* This coordinate system is generated within the present
Bladed Disks Computer Program, and is used to define
flow and motion properties for the unsteady aerodynamic
theories on a given swept chord §. It is located at
the blade leading edge with the ig directed aftward
along the chord s. ?§ is defined normal to the blade

local mean surface.

2.4 DEGREES OF FREEDOM

The total translational and rotational displacements at any
fixed point of the rotating and vibrating turobsystem, expressed

in body-fixed coordinate systems, consist of

— steady state components due to the steady airloads and

centrifugal loads, and
- vibratory components due to the vibratory excitation,

14



superposed on the steady displacements.

The aerodynamic vibratory response problem of the turbosystem
is posed herein in terms of the vibratory components of total

displacements.

2.5 EQUATIONS OF MOTION AND THEIR SOLUTION

For an N-bladed tuned turbosystem, with structural coupling
between blades via a relatively flexible hub, the equations of
forced motion can be written as (Ref. 4)

- vise.

(M &)« [[8'] + m[gg'j]{a"}

- elas.

. —[Kn] . [K"]di#'-:f[M?]]{u"}

Géro,

- [Q]{v " = {P"} (1)
and

{u\/\} _ {M’A*‘} , H=1,z;"’)N. (2.)

side 2 side 1

The forcing term on the right hand side of equation (1) is
entirely due to aerodynamic excitation. Cyclic sector numbers
and their sides referred to in equation (2) are illustrated in

Figure 2.5 .
n

In seeking solutions for the vibratory displacements W ’

for all n , based on the qualitative and quantitative nature of

15
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the right hand side forcing functions, the following steps,
applicable to tuned cyclic structures with rotational cyclic

symmetry, are considered.

n
1. The displacements W' (and the loads P ) can be written

as (Ref. 4)

(o}

W'} = {3°)

M

[ Ekc} cos(=i ka) + {ahs} sin (i:'l hc-)]

{

n-| N/2
+ (-1 {3} (3)
This is a standing wave representation wherein the
. — — — —H .
coefficients &° , u®¢ , RS and @ /2 are, in general,

functions of time or frequency. For a given circumferential

harmonic index k, by defining appropriate relations between
Uk and wRS the above equation can be transformed to a

travelling wave form ( Appendix C ). The constants ky and

& are given by,

hL = (N=1) / 2 , N odd ,
— -2
= (N >/ 2, N even r(‘”
and
O = 27w/ N
7
2., For a given circumferential harmonic index p
— —R —
iu_n‘h} —_ uhc} a:s(v—z:—i.hcv) + {u., S} S'M(n——\ h&) (5‘)

17



With the use of inter-segment compatibility constraint

conditions (equation 2)

_K
G’c\a( h)]{“— } ond (6)

l

(G (014" (7)

N g
|
g,l\r ~
[V (3
O
! ]

—-K .
where W is an independent displacement vector consisting

of and degrees of freedom from the interior and

side 1 of a cyclic sector. The transformations C;ch and
G%sk are functions of the circumferential harmonic k, and
express the side 2 degrees of freedom in terms of those on

side 1.

Equation (5) can then be written as
. J— K
{u } = S.“S(ﬁ ka) [G‘ck] + sm(n-: ka.) EGSSJJ{“}. (g)

The real eigenvalue problem, for a given k, can then be

stated from equation (1) as
—K —K =K
|- [F] + [RT]]4E") = o ()
where

{EK} = {u }e (10) contd.

18



-

—K T n T
[M ] = [Gick] [m ][Gch-] + [G‘sk-][M ][Gsk_.‘, and

¢ (19)

—K T n T n
[E7] = [6, 00K Il6u] + [64] [xI[6]).

o

—K .
The eigenvectors [ & ;]obtained from the solution of

equation (9), can be used to introduce the modal coordinates

g as
vy = 13113 3 (1)

The modal equations of forced motion of the turbosystem, for
a given circumferential harmonic index k, can then be written

from equation (1)

where

Iﬁ 3 = EaKjfﬁKjfékj (13) contd.

19



= K Kl _ K — K )
] J=1¢ ][R IL& "] ,
= K — T_ K —-K
[K )= [ETL[RIET |
= K -K_T __—K - K
(& J=1L[¢J[a Jl# ]
o (13)
_!<
[R [cwml [(QILG,] = [e,] CQ J[G»,J
ond
K T. _Re --‘tZS
(P 1 =1601F% + [0 {F"}
J
For a given circumferential harmonic index k, ﬁkc and
Fshé are the circumferential harmonic components of the

total external excitation. Such excitation due to

aerodynamic sources is discussed in Section 3.

The generalized oscillatory aerodynamic reaction matrix

BK can be written as
XZ?K] [5}“]&2][?5 7+ [#°7 R I[&" ] (14)
where

—ke _K

Le ] = [GCJ[¢ ] (15) contd,

20



and

(77 - [6,707 7 (15)

are the 'cosine' and 'sine' component mode shapes of

-

eigenvectors & Equation (14) is rewritten as

-::K c s
(e J = [@,]) + U&;] (6)

For turbosystem structures with flexible hub/disk,

c s
a) Q, and Q_; exist when the circumferential harmonic

Py

index k = 0 and = N/2 when N, the total number of cyclic

segments in the structure, is even, and
C

b) only Q.. exists when k = 0 or N/2, N even.
LA

For turbosystem structures with rigid hub/disk, each cyclic
segment of the structure behaves structurally independent of
its adjacent segments. Degrees of freedom at segment
boundaries are completely constrained to zero. The only
possible structural modes are those akin to k = 0 modes with

[
fixed inter-segment boundaries. Only & . exists.
Ashs

Derivation of Qﬁ_ is discussed in detail in Appendix A.

Supersonic chords are considered as examples. The derivation
of CQLL for subsonic chords alone was discussed in Ref. 6.

c s ) —kc
Q,, and Q. are generated, in turn, by considering ¢

— ks
and gﬁ ¢ in turn, to represent the structural modes in

21



equations (A29) and (A31l) of Appendix A.
—-K

10. Equation (12) can now be solved for % . Substitution in

equation (11), and equation (8) yields Lp'%

11. Repeating steps 2 through 10 for all applicable
circumferential harmonic indices, and substitution in

. . n
equation (3), result in W for all n .

12. Other dynamic responses such as stresses, etc., can be
obtained for all sectors of the turbosystem by current

NASTRAN procedures.

The procedure described above for the solution of
circumferential harmonic components of dynamic response, for a
given circumferential harmonic index, has been implemented in the
April 1984 release of NASTRAN on the CRAY 1-S computer system at

NASA LeRC (Ref. 9).

An overall flowchart of the solution procedure is shown in

Figure 2.6 .
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3. APPLIED OSCILLATORY AIRLOADS

3.1 GENERAL

Generation of applied oscillatory aerodynamic loads on the
blades of the turbosystems due to oscillatory relative inflow is
briefly discussed in this section. Complete details of the

airloads generation process are reported in Ref. 8.

A rotating turbosystem placed in a spatially non-uniform
inflow, or in a uniform inflow with its axis of rotation
misaligned with inflow direction, experiences oscillatory

relative inflow.

The resultant oscillatory airloads are computed by the use of
subsonic and supersonic 2-d cascade unsteady aerodynamic theories
(Refs. 10 and 11). Accordingly, the aerodynamic model of the
blade comprises non-intersecting strips as shown in Figure 2.2.
The swept blade of an advanced turboprop is shown as an example.
The analytical development is equally applicable to unswept

blades.

The computation of the oscillatory airloads is carried out in

the following four steps:

1. For a given chord, sinusoidal gust amplitudes, frequencies,
and other aerodynamic excitation parameters ( Appendix C ).,
are determined based on the relative inflow variations as the

blades go through one revolution.
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2. Subsonic or supersonic theory with appropriate gust inputs
from step 1 is used to determine oscillatory pressure

distributions on the chord.

3. The unsteady pressure distribution on the blade strip
associated with the chord is transformed to loads at the

finite element structural grid on the chord.

4. Steps 1 through 3 are repeated for all chords spanning the
blade.

After establishing the relative inflow velocity to be either
subsonic, transonic,.or supersonic from step 1, step 2 is merely
an application of the appropriate theory. 1In case of transonic
relative inflow, the airloads for -that chord are interpolated
from adjacent non-transonic chords. Steps 1 and 3 are discussed

further in the following sections.

3.2 GUST AMPLITUDES AND FREQUENCIES OF OSCILLATORY

RELATIVE INFLOW

The problem of determining the amplitude and freguency
contents of oscillatory relative inflow gusts can be accomplished

in four steps:

1. At the leading edge point A of any chord § (Figure 3.1),
the relative inflow velocity is determined as a function of
time t (at discrete time instances) during one revolution of

the turboprop rotating at a constant angular velocity .
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2. At each time step, the relative inflow velocity can be

resolved into E} , 3; « and Zy components of the local

chord coordinate system (Figure 3.1).

- Component along '§§ is the cascade relative inflow
velocity. Component along §§ is the gust velocity.
Component along 3, is the radial velocity, which is

ignored in 2-d cascade aerodynamics.
3. A Fourier series decomposition in -t of

a) the velocity component along Z; yields the cascade
mean relative inflow velocity as the constant term of
the Fourier series (along AB, Figure 3.1). This is used
to determine the relative Mach number and select the

appropriate aerodynamic theory.

b) the velocity component along 3} yields the necessary
sinusoidal gust amplitudes and frequencies which are
subsequently input to appropriate oscillatory inflow

aerodynamic theories.

4. Steps 1 through 3 are repeated for all chords spanning the
blade to determine the oscillatory pressure distribution over

the entire blade surface.

Referring to Figure 3.1, the relative inflow velocity at the
leading edge point A on the chord & , expressed in the chord

coordinate system, is
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— 0_A
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ﬁ1 pn. (%3 ( )
BL 2
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Selecting the angular velocity 2 to be
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equation (1) reduces to
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Basic

- 0
97 %

{val = [a7) {wA}TWd—- ol [Tf-LJ - (OBA>ZG (7)
(%),

where
f.@j : [TEL][TIB][TTI] . (8)

For clarity of presentation, further development is separated

into that for uniform and non-uniform inflows.

3.2.1 Uniform Inflow

In the uniform inflow case, the turbosystem axis of rotation
is inclined at an angle Y with the uniform inflow velocity as
shown in Figure 2.4. The transformation from the tunnel to the

inertial coordinate system (equation (4)) becomes

cosv ° —sinY
TI

[T ] - ) 1 o (9)
sinY o cosy

with the uniform inflow velocity given by

Tonwnel r <wA>xT
fwal = {4 o (10)

@
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Substitution of equations (10), (9), (5) and (3) in equation
4

(7) yields the constant (independent of -2t) part of (VA) =

and the oscillating (function of _a% ) part of (VA)g as

1l

con ( VA )_
x

By cost (my = [, (o), + B, (0M, T (0

bsc (VA)F (LJA)X Sin ¥ [(su sinnt Co:-ﬂ-‘b] (1)

-r

The equivalent complex representation of equation (12) is

bsc (VA)E_ = (wA)xT SinY /(3:'?_ + 2’; e , (13)

With tan& = g /B, (14)

Equation (11) defines the cascade relative inflow velocity for

the chord §, whereas equation (13) describes the incoming gust

velocity at the frequency .a .

3.2.2 Non-Uniform Inflow

Equation (7), in its most general form, yields the expressions

for the cascade relative inflow velocity and the gust velocity.

The cascade inflow velocity is

(VA)?_ = g, (NA)XT S <WA>YT + 8 <WA)2T
R RGN YN 45

where gij ‘s are the elements of the transformation G (equation
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8), with

dy = (;u Ty * (217. [ T'?-l cos AT+
+ (3’,3 {_ T,, sinAt o+
9. = (3” ’C”_ + B, [’Cu_ cos Nt +
P [_ T,, sinat +

-
913 = (311 Lix all O [(C"Lj cosNE 4+
+ (223 [—T’L} Stm Nt +

The incoming gust velocity is

(),

9., (wA)XT + g (wA)yT

- [—— P?.z (03A>%8 * Fzg <ORA)YB

T
2

T
31

§ Sin ..n_t]

(e)

cosnt ]
J

I
Lza

, €08 nt ]
B

sin .n.t]

-
C2

7)

T35

"L.D cos ALt j ]

s:mnc]

(e)

. g, G,

] >

(19)

where
- T T t 4+ T i ﬁA:]
g?.‘l (5?‘1 9" + (57_,7_ [ L‘H Cos L (,31 Siv
- St T 20
Py, { T sim + T, C.ox.f\,t] . (2¢)
— T c T h ‘b]
2”_ — (5’“ ‘T.M_ + (l'm' T, ot T, st
21)
+ (31'} [-‘E Swmnkt + ’2‘3’2, CoS.ﬁ.‘b’] ; (
= 9 + qT cosfLt + T sin _Axtj
%13 Gzl 13 21 [ % 3
- \ + T Nt (22)
+ (Zm’;[ Tog S A8 i ]
Both (VA); (equation (15)) and (VA)g (equation (19)) are
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periodic functions of the azimuthal angle -t , with a maximum
period of 27T as the blade completes one revolution in spatially
non-uniform absolute inflow field. Each of these velocities can

be expanded as finite Fourier series
P
f (at) = . + Pz (ﬁ’c cos pat 4+ -Fpr sin p.n-t] . (23)
= {

The coefficients £, ch, and fPS are determined by knowing
f at M equally spaced intervals between 0 and 27 . The upper

limit of harmonics , P , is given by

(M-1)/2 ™M odd @)

= M/Q__ ™M even

/

P

]

In the non-uniform inflow case, the fo component of (VA)EZ
is taken as the constant part of the cascade relative inflow

velocity. For a selected harmonic p , the oscillating part of

(VA); is written as

v i(bat_-58,)
z e(F b

_ 2
- <VA)5 b - \/FFC ¥ s > (a5

with

1}

tanﬂk (z6)

Fes /%y

c

°

The excitation frequency correspondingly is }DJI
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3.3 GRID POINT LOADS FROM OSCILLATORY PRESSURE
DISTRIBUTION ALONG CHORD

The subsonic and supersonic aerodynamic routines compute the
oscillatory pressure distribution at a number of points between
the leading and trailing edges of a given chord. These points
are generally distinct from the structural grid points at which

the applied airloads are desired.

To obtain the loads at structural grid points, the chord is
divided into a number of segments as shown in Figure 3.2. For
each of the segments, the loads at its ends, directed along

+ Y , are calculated. As an example, for the Gz‘GB segment,

%
- a3 -
- J—- > L4 x o— "'— A—
e = & _[ Ap ()W (%) % - % x] , ond 7)
L %
(A
’ *a3 =. = - % 4z )
s 2w | | epe e () EoEdR] s
:iGn.
where A = Egz- 3561 r and w is strip width associated

with the given chord.

Furthermore, the load at grid point G, for instance,
comprises the algebraic sum of those contributed by segments

G1 GQ_ and GQ._.G3 .

The applied oscillatory airloads generation procedure has been
implemented in a stand-alone (independent of NASTRAN system)
computer program, AIRLOADS, which is described in detail in Ref.

8.
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4. APPLICATION EXAMPLES

4.1 GENERAL

The theoretical development of the preceding sections, as
implemented in the Bladed Disks Computer Program in fhe April
1984 release of NASTRAN on the CRAY 1-S computer system at NASA
LeRC, was used to conduct a total of eight examples on the SR-3
and SR-5 advanced turboprops. These examples were selected by

NASA.
4.2 EXAMPLES

The SR-3 and SR-5 examples are listed by operating conditions
in Table 4.1. These conditions were selected by NASA to cover a
range of wind tunnel test conditions and provide a degree of
commonality between examples to cut down on the computational

steps.
At each of these operating conditions, it was desired to

1. calculate the natural frequencies and mode shapes of the

turboprops,
2. examine the aeroelastic stability, and

3. determine the one-per-rev stress response at the strain gage
locations shown in Figures 4.1 and 4.2 for the SR-3 and SR-5

turboprops, respectively.
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Table 4.1 Operating Conditions for SR-3 and SR-5 Examples
NASA Freestream Blade Prop. axig Prop.
Turboprop Test Setting tilt RPM
Blade Rdg. Mach Velocity Densi%y Angle (degqg)
No. No. (ft/sec) x 10
(lbf—gecz/ F3/4 (deg)
ft)
190 .353 398 2.3833 48.9 8 8000
273 .798 873 1.9034 60.8 2 8000
SR-3
277 .795 871 1.9053 60.8 4 7000
278 .795 871 1.9060 60.8 4 8000
8508 .801 885 1.8225 70.8 2 5500
8511 .797 881 1.8313 70.8 5 5500
SR~5
8607 .360 411 2.3057 60.8 12 6000
8610 .361 411 2.3062 60.8 3 6000
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4.3 STRUCTURAL AND AERODYNAMIC MODELS

NASA provided the NASTRAN finite element structural and
aerodynamic models of the SR-3 and SR-5 turboprops shown in
Figures 4.3 and 4.4, respectively. The aerodynamic models were

defined as subsets of the structural grid.

Both models, with homogeneous material properties of Young's
7
modulus = 1.6 x 10 psi, Poisson's ratio = .35 , and mass

.16 1bm/in? + Wwere built using the TRIA2 triangular

]

density

plate element with bending and membrane capabilities.

4.4 BOUNDARY CONDITIONS

For the purposes of the present analyses, the turboprop hub
was considered to be rigid as compared to the blade flexibility
for both SR-3 and SR-5. This mechanical decoupling between blades
was achieved by completely constraining the degrees of freedom at

the bottom of the blade shank, and by not modelling the hub.

4.5 APPLIED OSCILLATORY AIRLOADS

The applied airloads were generated by using the AIRLOADS
program discussed in Section 3 and Ref. 8. This program is
capable of reading the NASTRAN structural and aerodynamic grid
data, and the operating conditions to generate the oscillatory
airloads. Upon user's request, the program also produces two

output files for the oscillatory applied airloads for convenient
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inclusion into NASTRAN Case Control and Bulk Data Decks. The
streamline geometry and flow data generated by the AIRLOADS
program was also useful in conducting aeroelastic stability

analysis.

4.6 ANALYSIS STEPS FOR EACH OPERATING CONDITION

A series of procedural steps was setup to systematically
conduct all of the analysis required for the turboprops at each
of the operating conditions listed in Table 4.1. An overall

flowchart of these steps is shown in Figure 4.5.

The sequence of four runs shown is arbitrary to an extent ,

and could be rearranged as per user's needs.

Run 1. Differential/Stiffness analysis was conducted at the
operating rpm with the blade set at the selected blade setting
angle. Displacement Approach RF 4 was used , and the total

(elastic plus differential) stiffness was saved as KTOTAL.

Run 2/3. Aeroelastic stability of the turboprop at the
selected operating point was determined using the Aero Approach

RF 8. V-g, V-f plots were used to determine stability.

If desired, the AERO and STREAMLi bulk data cards required for

this run can be obtained from the AIRLOADS program, Run 3/2.

Natural frequencies and mode shape plots can be optionally

obtained in this run.
Run 3/2. At the given operating condition with the prop axis
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set at an angle with the uniform inflow, the applied oscillatory
airloads distribution on the modelled turboprop blade was
generated using the newly developed AIRLOADS program. At user's
option, individual output files for direct inclusion in the Case
Control and Bulk Data Decks of the subsequent response Run 4 were

also created.

Run 4. Finally, modal forced vibration analysis was conducted
using the newly developed Displacement Approach RF 8 alter
package, MFVAAET (Modal Forced Vibration Analysis of

Aerodynamically Excited Turbosystems).

Element stresses in element coordinate systems for elements
neighboring a strain gage location were transformed along strain

gage orientation as follows:

S, + 8§ S —S
(S = XY L 2xT2Y (520 & S siw2® ond
norwmal 2 2 Xy ’
- S¢Sy sw 20 Sx cos L6
shear T J /

where 6 is the angle between the strain gage axis and the

x-axis of the element coordinate system.
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5. RESULTS AND DISCUSSION

5.1 GENERAL

Results of the SR-3 and SR-5 examples described in the
previous section are presented in Table 5.1 (SR-3 and SR-5),
Figures 5.1 through 5.15 (SR-3), and Figures 5.16 through 5.32
(SR-5) .

For all of the contour plots shown in these Figures, the
contours for the translational displacements along the Basic
coordinate system Y axis are plotted within the UNDEFORMED shape
outline. The outline for the DEFORMED shape accounting for the
total translational displacements is also shown. For all mode
shape plots, the contours represent zero displacement along the

Basic Y axis.

Following discussions are grouped by analyses.

5.2 DIFFERENTIAL STIFFNESS

Results of differential stiffness analysis of SR-3 test
reading no. 190, and SR-5 test reading no. 8508 are shown in

Figures 5.1 - 5.2, and 5.16 - 5.17 respectively.

Convergence of the non-linear part of the analysis was

achieved after two iterations for all operating conditions.

In the present context, the differential stiffness analysis
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Table 5.1 Natural Frequencies of SR-3 and SR-5 Turboprops
Turboprop NASA Blade Prop. Natural Frequencies, Hz.
Blade Test Setting RPM
Rgg. PAngle Mode 1 Mode 2 Mode 3 Mode 4 Mode 5
’ 3/4 (deg)
190 48.9 8000 227 431 673 759 915
273 60.8 8000 220 423 666 757 911
SR-3
277 60.8 7000 210 417 652 743 905
278 60.8 8000 220 423 666 757 911
8508 70.8 5500 140 275 558 650 718
8511 70.8 5500 140 275 558 650 718
(166) * (287)
SR-5
8607 60.8 6000 150 281 564 658 723
8610 60.8 6000 150 281 564 658 723
(173) (288)

* Experimental Values




MAX-DEF. = @.36378446

SR3 RESPONSE TO 1 PER REV 0SC. AIRLOADS
NASA TEST READING NO. 199

DIFF. STIFF. ANAL.--LINEAR SOLUTION
STATIC DEFOR. SUBCASE 1 LOAD 1

Figure 5.1 SR-3 Differential Stiffness
Analysis--Linear Solution
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MAX-DEF. = @.12401216

SR3 RESPONSE TO 1 PER REV 0SC. AIRLOADS
NASA TEST READING NO. 190

DIFF. STIFF. ANAL.--NONLINEAR SOLUTION
STATIC DEFOR. SUBCASE 2 LOAD 1

Figure 5.2 SR-3 Differential Stiffness
Analysis--Non-Linear
Solution
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NASA TEST READING NO. 190
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MODAL DEFOR. SUBCASE 1 MODE 1 FREQ. 227.1976

Figure 5.3 SR-3 Mode 1
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Figure 5.5 SR-3 Mode 3
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MAX-DEF. = @.69576762

SR3 RESPONSE TO 1 PER REV 0SC. AIRLOADS
NASA TEST READING NO. 190

K = © MODES- OSCILLATORY AIRLOADS PRESENT
MODAL DEFOR. SUBCASE 1 MODE 4 FREQ. 759.23%96

Figure 5.6 SR-3 Mode 4
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MAX-DEF. = 8.77304033

SR3 RESPONSE TO 1 PER REVY OSC. AIRLOADS
NASA TEST READING NO. 199

K = @ MODES- OSCILLATORY AIRLOADS PRESENT
MODAL DEFOR. SUBCASE 1 MODE 6 FREQ. 916.2628

Figure 5.7 SR-3 Mode 5
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COMPARISON OF ANALYTICAL AND TEST STRESSES

(PSI)

MAGNITUDE OF OSCILLATORY STRESS

SR3: NASA TEST READING NO. 190
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SR-3 One-Per-Rev Stress
Comparison--Test Reading
No. 190
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COMPARISON OF ANALYTICAL AND TEST STRESSES

(PSI)

MAGNITUDE OF OSCILLATORY STRESS

SR3: NASA TEST READING NO. 273
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COMPARISON OF ANALYTICAL AND TEST STRESSES

SR3: NASA TEST READING NO. 277
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Figure 5.14 SR-3 One-Per-Rev Stress
Comparison--Test Reading
No. 277
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COMPARISON OF ANALYTICAL AND TEST STRESSES

SR3: NASA TEST READING NO. 278
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DIFF. STIFF. ANAL.--LINEAR SOLUTION

STATIC DEFOR. SUBCASE 1 LOAD 1

Figure 5.16 SR-5 Differential Stiffness
Analysis—--Linear Solution
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MAX-DEF. = 1.00003000 '

SRS RESPONSE TO 1 PER REV OSC. AIRLOADS

NASA TEST READING NO. 8508

K = @ MODES- OSCILLATORY AIRLOADS PRESENT

MODAL DEFOR. SUBCASE 1 MODE 1 FREQ. 140.0948

Figure 5.18 SR-5 Mode 1
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NASA TEST READING NO. 8508

K = @ MODES- OSCILLATORY AIRLOADS PRESENT
MODAL DEFOR. SUBCASE 1 MODE 2 FREQ. 276.8804

Figure 5.19 SR-5 Mode 2
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SRS RESPONSE TO 1 PER REV 0SC. AIRLOADS
NASA TEST READING NO. 8508

K = @ MODES- OSCILLATORY AIRLOADS PRESENT
MODAL DEFOR. SUBCASE 1 MODE 3  FREQ. 558.1463

Figure 5.20 SR-5 Mode 3
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MODAL DEFOR. SUBCASE 1 MODE 4 FREQ. 650.2884

Figure 5.21 SR-5 Mode 4
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Figure 5.22 SR-5 Mode 5

69



. ©.6 1.8 1.6 2.6 2.6 3.8 3.6 4.0 4.6E4
L 4
L~
3. ,/ // 3.
E-1 E-1
2. /] //// 2.
1. % //// 1.
e. ‘% e +—re.
g < 1.
o -2. \ \\ -2.
fA1 -3. \ \ -3.
P N\ .
\v
N \ N .
-6. X -6.
\ . N
¢ - - ——\—Qperating| poimlx -7.
6. \ velocfity N\ ..
\ Y
-9. -9.
6. 66 1.6 1.6 2.8 2.6 3.0 3.6 4.8 4.6E4
VELOCITY VSBAR IN/SEC
8. 8.6 1.8 1.6 2.8 2.6 3.8 3.6 4.8 4.6 E4
—— -
6.6 SN 6.6
E2 umi_.x\\' \\Q E2
6.8 A 6.@
\
{fr g l'J_a—"—’—"r
R 6.4 T~ 6.4
R ~ T~
8 4.8 \\\\25\\1< 4.8
u T~
S 4.2 “z
c
Y 3.6 3.6
Fose 3.e
mnm_g\
2.4 < 2.4
H
z \\\n
1.8 1.8
_f-"’/
s ol
1.2 b1.2
8. .6 1.8 1.6 2.8 2.6 3.8 3.6 4.8 4.6 E4
VELOCITY VSBAR IN/SEC
Ficure 5.23 SR-5 V-g, V-f Curves

—-—Test Reading No. 8508

70



e. 8.6 1.0 1.6 2.0 2.6 3.0 3.6 4.0 4.6 E4

OZw=TDIXI>O

Q

a. 8.6 1.0 1.6 2.8 2.5 3.8 3.6 4.8 4.5 E4
VELOCITY VSBAR IN/SEC
e. 8.5 1.@ 1.6 2.0 2.6 3.8 3.6 4.8 4.6 E4

M «O0OZMCOMDN

N X

4.8

4.2

3.6

3.0

2.4

1.6

4.8

4.2

3.6

3.e

2.4

1.8

,.——F"-‘—

-—!——A—_‘
1.2

. 8.6 1.8 1.6 2.9 2.6 3.8 3.6 4.8 4.6 E4
VELOCITY VSBAR 1IN/SEC

Figure 5.24 SR-5 V-g, V-£f Curves
—--Test Reading No. 8511

71



8.6

ORZGiNAL PA@E 1)
o3
OF POOR QuaLiry

1.8 1.6 2.8 2.6 3.e 3.6

4.0

4.6 E4

OZ-TI>O

4.0

4.2

«OZMCOMDBT

3.6

-«

3.6

N X

1.2

4.6 E4

4.6 E4

\-\?

[di

——

]

a.

8.6

Figure 5.25

1.8 1.6 2.8 2.6 3.8 3.6
VELOCITY V¥SBAR IN/SEC

SR-5 V-g, V-f Curves
--Test Reading No. 8607

72

4.8

4.5 E4

6.6

6.4

4.8

3.6

3.0

2.4

i.8

1.2



VL
8g
& 3
._,_L_.un
g

Z 3
&
(2 1y,
00

1.6 2.8 2.6 3.0 3.6 4.8 4.6 E4

1

8.5

-1.
-2.
3
-4,
&6
-6.
-7.
8
-9.
4.6 E4

.8

4

DAHPINO o

FREQUENCY 'S

8610

Curves
No.

—-Test Reading

SR-5 V-q, vy-f

Figure 5.2¢

73



8.4 e.8 1.2 1.6 2.6 2.4 2.8 3.2 3.6 4.8 4.4 E4

E-1 l/’ E-1
2. 2.

e ’/,—”/ £ £~~\4?//, \ / 8.
-1 8 {\s\ - \ e M -1
0 -2 \(; \\ \ -2,
: -a. \ [~ \ A -3
T - i \\\\j& -a.
8 -5 \ -6

[~]

'
N
|~
|
N

VELOCITY VSBAR IN/SEC

7.2 2 1 - 7.2
E2 E2
6.6 ~i\‘\\ 6.6
—— 1
F 6. < 6.0
R [ -l-_~,____g\
€ 6.4 ™~ 6.4
a
U g = 4.8
4, < .
N —
c 4.2 4.2
Y
3.6 3.6
F
3.e 3.0
m
H 2.4 L 2.4
z \
1.8 1.8
—
e
1.2 1.2

8.4 8.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4. 4.4 E4
VELOCITY VSBAR IN/SEC

Figure 5.27 SR-5 V-g, V-f Curves with
Refined Reduced Frequency
Range (.10-.30)--Test
Reading Nn. 8508

74



SL

1168 "ON butpesy

3S9L--(0€°-0T ") obuey

Aousnbaaxg psonpay paurioy
Yatm saaand F-A ‘b-A G-¥S 8Z°G 2aInbtg

JI38/NL  ¥YBSA ALIDOT3A
¥3 ¥°p A 4 ?°'c 2’ 82 | 41 8°z 9% FA 8°9 b0

2L 2
1]
a'i ./ et
4
oA U p-z H
>~o
oc ?°c
3
9°c o°g
A
2 2y O
N
8y e 8y w
/ 7/ o
v°g S—| T~ '3 3
R e e | 3
8°9 > 2’9 J
e
$9°9 pas 9°9
za B z3
z'z IIIW}IJ T z'z

3 ¥y "8 2 ?°c z'c a2 | 4 9°2 ?°4 FA) 8°'e L ]

3 pp 28 4 $°c 2’c 82 | SE - A ?°i 23 8'9 v'e

- \ -
\ .
\

N / taN N N

- " -1

. ‘aN d o

o /\ N \ )

. \ | AN i

e l.\ltllllullll.l\ltl\l / 3 Juw s ®
/ N 1 Va

=5 / / 3

PI b°F - 4 9°c 2'c 8°2 L 4 0°2 °°L 2°t 8°0 b0



COMPARISON OF ANALYTICAL AND TEST STRESSES

SR3: NASA TEST READING NO. 8508
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Figure 5.29 SR-5 One-Per-Rev Stress
Comparison--Test Reading
No. 8508
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COMPARISON OF ANALYTICAL AND TEST STRESSES

(PSI)

MAGNITUDE OF OSCILLATORY STRESS

SR5: NASA TEST READING NO. 8511
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Figure 5.30 SR-5 One-Per-Rev Stress
Comparison--Test Reading
No. 8511
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COMPARISON OF ANALYTICAL AND TEST STRESSES

(PSI)

MAGNITUDE OF OSCILLATORY STRESS

SR5: NASA TEST READING NO. 8607
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Figure 5.31 SR- 5 One-Per-Rev Stress
Comparison--Test Reading
No. 8607
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COMPARISON OF ANALYTICAL AND TEST STRESSES

(PSI)

MAGNITUDE OF OSCILLATORY STRESS

SRS: NASA TEST READING NO. 8610
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was conducted principally to save the total (elastic plus
differential) stiffness matrix for use in subsequent aeroelastic

stability and dynamic response analyses.

5.3 NATURAL FREQUENCIES AND MODE SHAPES

The first five natural frequencies for all SR-3 and SR-5
operating conditions are listed in Table 5.1. These frequencies
were obtained by including the effects of differential stiffness

and centripetal softening terms.

The only available experimental frequencies are also shown in

the Table.

The first five mode shapes for SR-3 test reading no. 190, and
SR-5 test reading no. 8508 are shown in Figures 5.3 - 5.7, and
5.18 - 5.22, respectively. These mode shapes were determined at
the operating speeds of the turboprops. Inserts of holograms
from the bench modal tests (zero rpm) are also included in these
Figures. Although the nodal contour patterns can not be directly
(and exactly) compared, due to the rpm differences and the Basic
coordinate system Y axis not being normal to the blade surface at
all points, a broad-based correlation between the calculated and

observed mode shapes is indicated in these Figures.

5.4 AEROELASTIC STABILITY

Velocity-damping (V-g) and Velocity-frequency (V-f) curves
summarizing the complex eigenvalues of aeroelastic stability
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analysis for each of the four operating conditions of the SR-3

turboprop are shown in Figures 5.8 through 5.11.

The first five natural modes were included in the stability
analysis conducted by the KE method in NASTRAN. The reduced
frequencies were based on the natural frequencies of these modes,
and the semichord and cascade relative inflow velocity of the
reference chord (Figure 4.3). No structural damping was assumed.
The cascade relative inflow velocity on the reference chord
defining the operating point is shown by a vertical line in each
of the V-g, V-f plots. The aeroelastic stability of the
operating point is established by a negative damping value for
each of the structural modes at the operating point velocity

(vertical line).

This is observed to be true in all of the SR-3 operating

conditions (Figures 5.8 through 5.11).

The V-g, V-f curves for the four SR-5 operating conditions are

presented in Figures 5.23 through 5.26.

In these cases too, the first five structural modes were
considered in the aeroelastic stability calculations. No

structural damping was assumed.

While the operating points 8607 and 8610 (Figures 5.25 and
5.26) are seen to be stable, aeroelastic instability is indicated
at the 8508 and 8511 test conditions (Figures 5.23 and 5.24) by
the positive damping value in structural mode 1. To highlight the

damping distribution in this mode near the operating velocity,
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these two cases were further analyzed by selecting a finer
reduced frequency range (.l to .3) about the first structural
mode frequency. The resulting V-g, V-f plots are shown in
Figures 5.27 (8508) and 5.28 (8511). A positive aerodynamic
damping value of about 2% is indicated in mode 1 for both of
these curves. With the assumption of 2-3% structural damping
present in the turboprop blades, the 8508 and 8511 test
conditions can be treated as marginally subcritical operating
points. A uniform structural damping value of 3% was used in the

response calculations at these two operating conditions.

5.5 VIBRATORY RESPONSE TO AERODYNAMIC EXCITATION

The aerodynamic excitation in all of the eight examples is due
to the turboprop axis of rotation being misaligned with the
uniform inflow. Hence, the only excitation frequency is the
one-per-rev value for each of the operating conditions.
Magnitudes of the one-per-rev oscillatory stress response of the
SR-3 and SR-5 turboprops at the strain gage locations with
available wind tunnel data are shown in Figures 5.12 - 5.15, and
5.29 - 5.32 respectively. (Strain gages are identified in

Figures 4.1 (SR-3) and 4.2 (SR-5)).

A range of stress values covered by the finite elements
neighboring a strain gage location is plotted for direct

comparison with the measured value.

The first five structural modes in each case were included in

the response calculations.
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In regards to the comparison of calculated and measured

stresses, the following points are noted:

1. 1In modal forced response analysis, the calculated stress

response is essentially determined by the following factors:

a. modal frequencies,

b. modal stresses,

c. modal damping,

d. excitation frequencies, and

e. excitation levels.

2. If the excitation frequencies are well separated from the
modal frequencies, the modal damping.exerts insignificant

influence on the stress response.

3. If only one excitation frequency exists, and is placed well
below the first modal frequency, the principal, and
significant, contribution to the response stresses comes from

the modal stresses of the first mode.

4. The contributing modal stresses are 'scaled' by the

excitation levels to the calculated response stresses.

5. Keeping in view the above 4 points, the following

observations are made in the eight SR-3 and SR-5 examples:

a. The only one-per-rev excitation frequency in each

case is well below the first modal frequency as
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summarized in Table 5.2.

b. This implies the insignificance of modal damping,
and the significance of modal stresses of the first

structural mode toward computing the response stresses.

Figure 5.33 illustrates the striking similarities
between the calculated stress responses of all four SR-3
cases. Gage-to-gage stress distribution for each case
(Figures 5.12 - 5.15) is normalized with the mean stress
of gage 1 in that case. These stress distributions are
also noted to closely resemble those exhibited by the

modal stresses in the first structural mode.

Figure 5.34 shows a similar relation between the
calculated stress responses of all four of the SR-5

cases.

c. The one-per-rev applied oscillatory airloads
distribution effectively scales the modal stresses in

the first mode to the calculated response stresses.

While an across the board inspection of comparisons of
calculated and measured stresses in all eight cases reveals a
generally good correlation, some specific deviations are

noted as follows:

a. In all SR-3 cases, gage 3 measurements are higher
than predictions. This may be due to discrepancies in
strain measurements or strain-gage orientation. The

finite element model (Figure 4.3) does not reflect

ScS
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Table 5.2 Comparison of Excitation and Modal Frequencies

Turboprop NASA Excitation Modal Frequenciesz
Blade Test Frequency,
Rdg.
No. Hz. Mode 1 Mode 2
190 133 227 431
273 133 220 423
SR-3
277 117 210 417
278 133 220 423
8508 92 140 275
8511 92 140 275
SR-5
8607 100 150 281
8610 100 150 281
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MAGNITUDE OF OSCILLATORY STRESS

( NORMALIZED BY GAGE 1 VALUE )

COMPARISON OF CALCULATED STRESS RESPONSES
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Figure 5.33
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MAGNITUDE OF OSCILLATORY STRESS

COMPARISON OF CALCULATED STRESS RESPONSES
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Figure 5.34 SR-5 One-Per-Rev Calculated
Stress Response Comparison Between
Cases
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abnormal element connections or boundaries in this

region.

b. Similar observations can be made for gage 6 in SR-5

cases.

c. Test cases with a combination of low (.35 - .36)
Mach numbers (SR-3 190, SR-5 8607 and 8610), high tilt
angles (SR-3 190 and SR-5 8607), and very highly swept
blades (SR-5 8607) may be more sensitive to the
aerodynamic modelling of the tip regions of the blade.
This, in turn, affects the applied oscillatory airloads,
ultimately altering the vibratory stress response.
Spacing, number, and orientation of streamlines in such
regions of the blade are some of the variables of the
aerodynamic model which will provide a good basis for

any sensitivity investigations.
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6. CONCLUSIONS

Theoretical developments of a new capability in NASTRAN for
modal forced vibration analysis of aerodynamically excited

turbosystems have been described.

The capability has been successfully applied to eight NASA
wind tunnel test conditions of the SR-3 and SR-5 advanced
turboprops for predicting the vibratory response of the

turboprop blades.

NASTRAN pré-processing capability of the stand-alone AIRLOADS
program has been successfully utilized in generating the
applied oscillatory airloads on the swept blades of the

advanced turboprops.
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7. RECOMMENDATIONS

The application examples conducted in the present work have
been for single-rotation advanced turboprops at a number of
operating conditions. Two or three of these eight cases have
indicated a need for analyzing refined aerodynamic models in

improving predictions.
It would prove useful to,

1. study thg aerodynamic model variations as they affect the

applied airloads and response predictions, and

2. apply the capability to analyze forced vibrations of other
turbosystems such as counter-rotating turboprops and

axial-flow turbomachines.
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APPENDIX A

SWEEP EFFECTS IN SUPERSONIC AIRLOADS DUE TO

OSCILLATORY BLADE MOTIONS

A.l1 GENERAL

The generalized modal aerodynamic force matrix Q;; due to
oscillatory motions of the swept blades of advanced
turbopropellers is derived. The two-dimensional supersonic
cascade unsteady aerodynamics program of Ref. 11 has been
modified to include the effects of blade sweep. The
modifications are similar to those carried out for subsonic flow
(Ref. 6). The blade is spanned by a number of non-intersecting
chords selected normal to any spanwise reference curve such as
the blade leading edge (Figure A.l). The modified subsonic or
supersonic two-dimensional cascade theory is applied on each of
these chords to determine the generalized aerodynamic forces
acting on the associated strip. The strip results are added to
obtain the blade aerodynamic matrix. This Appendix discusses the

sweep changes in supersonic aerodynamics. Those for subsonic

flow are contained in Ref. 6.

In order to conform to the existing computational scheme in
the Bladed Disks Computer Program, and thus reduce extensive
recoding, the chordwise generalized aerodynamic matrices are
first computed for predefined, simple, chordwise aerodynamic

modes (Figure A.2). The chordwise structural modes are then
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introduced via Fourier expansions to finally obtain the blade

generalized airforce matrix.

A.2 DEFINITIONS

Figure A.l illustrates some of the definitions pertinent to
incorporating sweep effects in the 2-d cascade programs. A_B_,
AB and A,B, represent three successive chords with points A's on
the leading edge. For the chord AB, at any operating condition
WA represents the absolute inflow velocity while AU (= . x §§)

is the blade (tangential) velocity.

In the plane WAU, VA = WA - AU represents the relative inflow

velocity.

AI is parallel to the axis of rotation, and does not, in

general, lie in the WAU plane.

AD is the projection of AC (BA extended arbitrarily to C) in

plane IAU.

The sweep angle AN  and the stagger angle A are

positive as shown.

A local coordinate system xyz is defined at the leading edge
point A of the chord AB such that X is directed along AB. V is
defined normal to the 'mean' surface containing the points A_, A,
Ay By, By and B_. The unit vector along ¥V, for the sensé of

shown in Figure A.l is given by

(F)x (AB) . (0®)x (A,B)

== — — - (A1)
}(A_r3+)x(Ag){ 1(k8>x(ﬁ+£§_>1

)
(8] R
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Modal translations along V and rotations about X are used in
deriving the generalized airforce matrix (Section A.6). For the
opposite sense of rotation, XyZ is defined to be left handed with

Y reversing direction.

The shaded area about the chord AB represents the strip of
integration associated with AB. The length of the strip is given
by AB, the widths at the leading and trailing edges are

respectively given by

A
le. R ( - 4‘) ’ (A’Z)
—_— o
wt.e. = 3 (B-B-i—) -k

A
where k is the unit vector along Z.

A.3 BLADE DEGREES OF FREEDOM

For aerodynamic computations, consider the blade to be spanned
by 8 chords with G structural grid points on each chord. The

blade degrees of freedom {u} can then be partitioned as
fuiﬂ

Uy

—=- A3
&U.}- = ﬁ__i_, 5 ( )
_E
(e )

S

where
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Uz,
Usq
wE}- =< . & (A4)
U _
sg
. u'fc‘.\)
u - represents the 3 translational and 3 rotational degrees

s
of freedom at grid point g on chord §.

A.4 NORMAL DISPLACEMENT, DOWNWASH AND PRESSURE DISTRIBUTION IN TERMS

OF CHORDWISE AERODYNAMIC MODES

The normal displacement (along + ¥) at any point X on the
chord s can be expressed in the local (chord) coordinate system

as a linear combination of the chbrdwise aerodynamic modes:
Sn o4 _ _ s _ T4 Lwt
w o (m, % ,t) = ,Q_S_(?;)i_é (x/zz)_J {‘7 (z)}e (ms)
P
where ig is the semi-chord,

s 37 .T.x : — .. % . [G-1mE
L? J = )_1 Sin(——————j-> .o Snﬂ( )“-SM(——;Z;—)J (Aé)

20_
3
represents the chordwise aerodynamic mode shapes, and

Wl

4 -

&,y

a,

T = (1)
%y
Lo

is the aerodynamic modal participation vector.
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The downwash at X can be written as

oo o ~ |2 2 ? o5
vE(R LR ) 2 | g *Vg{gg *f““/\gg}]“ ("‘,%,f)) (rg)

where V 3 is the chordwise cascade relative inflow velocity

directed along CA.

L .
Substituting for W« " from equation (AS5), the downwash can be

written as

. _ g 3@? 3
W - V;[L(“"hg f—tan/\‘gi_;)l_é_’ +’a§').a; JJ{?] 1}
’—3— ‘S—l ,L(.Jt
+L_tanA L2 14" }]e 7 (A2)
where
2 o7
vy =9z (A1)

and the reduced frequency

R, = wip /v, (a11)

Corresponding to the downwash boundary conditions associated

with each of the elements of the modal participation vector
. $2 C .
7;1 and its derivative ﬂg + the modified 2-d supersonic

cascade unsteady aerodynamics program computes the pressures on

— -—

4. and Y, surfaces at P discrete points distributed along
the chord S. (The contribution due to the variation of the
perturbation velocity potential in the Z direction is

neglected.) The distributions of these P points on the y_ and
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whereby the generalized chordwise aerodynamic force matrices are

N

s1 s T
[ASQ—J = [ngj[cé'kj / awnd
L (Az1)
s2 s 2 4T
[Ag5) = L Ty JICq] )
, z T2 oy ]
with [IEPJ =C [Iﬂp'] * z [I%'_')
a s _T <
[ng—] = [érgj [wi_]{””j | and > (A22)
4 S AT, A
[Ig]oj - [é—’,?] EWJ[TTPP—] ) J
Elements of matrices I;? and I;P have been evaluated as

chordwise integrals, and are presented in Appendix B.

A.6 TRANSFORMATION BETWEEN AERODYNAMIC AND STRUCTURAL MODAL

COORDINATES

Equation (A5) can be used to express the normal displacement

at the G structural grid points on chord s as

g B 51
{u"} = 4 L€, 101} (23
In terms of structural modal coordinates, u?n can also be

written as

—

("= [ 8

local

4y (t24)
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Comparison of equation (A23) with equation (A24) yields

{V]EH} fégsj [ sn, \ocal]{ } (a2s)

\

7 [G;i ]{%,;?I ' (aze)

Differentiation with respect to Z results in

e b= 1Ty L [E B a0 16 0] 1, e

where
sn locad
(6, ] = [é R (h28)
oz g.b o
?H/:ocosi
The modal displacement matrix & and its derivative
sv,l | ) .
gr sn . loca are derived from the global modal matrix ¢ as
follows:
gv‘lllo } i <i g\ob&'
B . = {-G‘ g, ! A29)
[ 2‘0 ] 99/ ][ 6/"‘ ] (

34 global
where each of the i modal columns of 55 o8k consists of

the three modal translations at each of the G computing station
grid points on the chord s.

Sni
The transformation G is given by
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L

_ - F[Tbe T
o] i 0 g4 ] b
o 1 o [23]
Tni : blot o _blol ) bl ’ by
Gn%/] = , [[Tz ]g [ 73 ]‘5 :: Tz ]] [ng
b
_o 1 o i i 1:':';

where Tbe and Tbg represent the coordinate transformations from
the NASTRAN basic system to the local (chord) xyz system and the

global (displacement) system, respectively.

Similarly,
's"n/foca* Eni ,’s'?_/gioba‘
?‘:'.¢. ]:[G‘ /—J[gﬁl' ] (A?I)
°or g+ ZE g~ ’
s )nbgl
where each of the i modal columns of @& & consists of

the three modal rotations at each of the G computing station grid

points on the chord s.

S
The transformation G is given by

e
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[Qf:_] /’—Vs’z'aq—— [ ] [A ]( j'[ s CG7 ] [6’3*‘}> . (A35)

1

st 3 .
Combining Q and Q52 + the generalized airforce matrix for

chord s is defined as
_ teV. pr s
s 2 [ 3 § _zt st
[Qu]:?i.'of,refv’s‘ (1/3 V.E }.—Q,;;_] *[Q;,,;,]
* gvef "X vef ?
r QBG)
- ! b/l ["““-
- E/i',fef £, vef Q,z;,]
o

A.8 BLADE GENERALIZED AIRFORCE MATRIX

The virtual work done by the aerodynamic forces on the blade
is the sum total of the virtual work done by all the chordwise

aerodynamic forces on their respective strips. Thus

-—

S
Svahade _ ZE: £~%/§
S=1
= 1? g, vef V—",?:e%’ Z SL%AJ[&—::,]{Z&A}; (A37)

whereby the generalized airforce matrix for the swept blade of

the advanced turbopropeller can be written as

S
blade 2 — s
[Q;;. 1= %é,vepvf,ref z [Q J= 1% £, vef Vs vef [QMJ (a32)
£z
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APPENDIX B

CHORDWISE WEIGHTING MATRICES (SUPERSONIC)

The chordwise weighting matrices - and I%P appearing in

&b

equations (A22) of Appendix A are evaluated.

1 [13] = [85, 7 IW LT,

2 x.3-2 «.P-2
Ip Ia Less . I, 53
1A= I = 33 I 1.5 =

I

— — I — .
I'zoG-'z_ Iarf‘.G,—z. x.§-2.3-2 “°°° I;;.c;-z.?_:.

e et

2
The six typical elements of I3P are as follows, with

y= i/ef :

2
a) Izzfydj = 2
0
z
— PR
b) Iz,_,ofgagﬁ = /3
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% r—2

Yy > 2
d) ng =
e) I%q‘ —

Yy 72
£) I

Y= 5
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1

o Y s e
, YF ond (vr+s5) even

16 (v=2)(s-2)

T (f—-s)”(w—{»s—‘?—)"

g _T
2 I = [2, ] Cwilm,]

_
I‘ I% Ia P .’ IF:—;-
I% Ixt I‘x--?-:?_ P I’x“.—P-_‘—»z__
= Igm Imems - I— 7=
I I . I__ __ .. I
G-1 x-G—-2 &-2.-3-2 G-1-P-2

The six typical elements of I’ZH,' are as follows, with y = Y/ﬁgz

) 1 =f:t:, = 4
(o]

b) Iz as given by typical element (a) of I

ok
C) z . Y—-2 .17 d
I__ = f Sin ———T—' Y Y
=
O

Yy >
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2 { C )‘-?—?.
= —— | 1 = (-1 ] y=23 4 §
(r__.2_> m 5 / /7

d) Ixf, as given by typical element (b) of It?F

° . 1‘ -

e) Iz'm as given by typical element (c) of Isf,-

ro>

m e

R =f o (2D ). stﬂ(-————“"f y) dy

v~ > )

s 7

= 1 Y= ¢

L

]
-ﬁ

$-
(2
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APPENDIX C

AERODYNAMIC EXCITATION PARAMETERS

C.1l GENERAL

Determination of inter-blade phase angles, excitation reduced
frequencies, circumferential harmonic indices, and the relation
between the cosine and sine components of applied airloads are
described. All cases addressing the turbosystems with flexible
or rigid hubs/disks placed in uniform or non-uniform inflow are

considered.

C.2 INTER-BLADE PHASE ANGLES

The possible inter-blade angles are determined by factors
concerning the nature of the imposed aerodynamic excitation. The
following points are noted here to define the inter-blade phase

angles:

1. At any given instant of time, equation (7) of Section 3
defines the relative velocity components at the leading edge
point of any chord on the reference/modelled/n=1 blade. This

blade is also identified in Figure 2.5.

2. At the same instant, the relative velocity components at the
corresponding point on any other (say, ng ) blade can also

be obtained from equation (7), Section 3, when
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eL BL
a) 'Tg is replaced by -T% *" where

{ fs) lo}
BLn QL .
[Tg ]: [Tg :] o cos™) SN n
0 —an cosy)
>
with
2T '
Y)-__— < n-—l) , n:‘l)l/..,/ N/ (C'I.)
and

b){WA}Tunnel and Oéﬁ\ are considered for the n .
blade.

3. Finally, the ratio of the oscillatory part of velocity
component VAgy on the nth. biade to that on the (n+l)th.

blade yields the inter-blade phase angle o as

osc (VA); , ny, blade eLcr' (c3)

osc (VA)g , (h+0), blade

This definition of g~ is consistent with that of Ref. 12.

The above procedure is used in defining o in each of the

following cases.

C.3 RIGID HUB/DISK, UNIFORM INFLOW

Excitation Reduced Frequency
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With the turbosystem axis of rotation misaligned at a small
angle with the uniform inflow velocity, the only excitation

frequency is given by

W = {,n.‘ (64')

where 1 is the angular velocity of rotation of the

turbosystem.

The corresponding reduced frequency for the blade is defined
with any of its chords selected as reference:

e ’Qf,fe-i’
blade = V. ; (e5)

/veF

k

where ﬁg)epand Vz veg are the semi-chord and cascade relative

inflow velocity, respectively, for the reference chord.

Reduced frequencies for other chords are scaled from the above

blade value.

Inter-Blade Phase Angle

This is given by

g = - ce
bloade 2 /N ) ( )

with N being the total number of cyclic segments in the

structure.

Circumferential Harmonic Index
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The only permissible value is 0 , together with the
requirement that the degrees of freedom on the segment boundaries
be constrained to zero.

—ke —ks
Relation Between P and P

These components of applied airloads are described in detail
in Section 2.5. For the rigid hub/disk and uniform inflow case,

=k —=he
P is identically zero, and only [  exists.

C.4 RIGID HUB/DISK, NON-UNIFORM INFLOW

Excitation Reduced Freguency

The possible excitation frequencies are based on the
circumferential harmonic contents of the spatially non-uniform

inflow, and are given by

W = F-i.ji ; (C7)
where p takes on the positive integer values of the
above-mentioned inflow harmonics.

Reduced frequencies are as per equation (C5) with w?’s from

equation (C7).

Inter—-Blade Phase Angle

Permissible inter-blade phase angles are obtained from 4 =

—-p.2w/N . However, in order to conveniently determine the
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jrcumferential harmonic index, especially

associated structural €

n-uniform inflow case, the inter-blade

in the flexible hub/disk no

phase angles are written as follows:

/
B o= (n-1)/% N odd o)
= N /L / N even

For o <P < h;_ = —p 2"/

For hl,_*}“<r)$k;_*(c}“>'\’ ,
J‘:._%.zm/u + (}+¢).fﬁ

47 ° /2 , L, .

L (c9)

Circumferential Harmonic Index

The only permissible value is 0, together with the requirement

that the degrees of freedom on the segment poundaries be

constrained +o zero.

—be _ks
P and P

Relation Between

pu— A

only P  type joads exist.

Cc.5 FLEXIBLE HUB/DISK, UNIFORM INFLOW

Excitation Reduced FrequencCy

The only admissible frequency 1is

w = {j{.\l (c10)

—

fod
et
w



with the reduced frequency given by equation (C5).

Inter-Blade Phase Angle

Only one inter-blade phase angle exists:

g = — 27 /{\] (011)

Circumferential Harmonic Index

The only possible index can be written as

k= lol /(amm) = (12)

5 ke =hs
Relation Between P and P

These two load components are related as

— —hke
P ks = + 4 2 (g13>

where the + sign applies if o¢"< o0, and the - sign applies

otherwise.

C.6 FLEXIBLE HUB/DISK, NON-UNIFORM INFLOW

Excitation Reduced Frequency

The possible excitation frequencies are
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w= p |2l (c14)

where p is a positive integer reflecting the circumferential

harmonic contents of the spatially non-uniform inflow.
Reduced frequencies, in turn, are obtained from equation (C5).

Inter-Blade Phase Angle

The permissible values are computed as per equations (C8) and

(c9).

Circumferential Harmonic Index

For selected excitation harmonics p, the permissible

circumferential harmonics representing the structural motion are

k = \o’}/(zﬂ/w)l (et5)

where o ‘s are from equations (C8) and (C9).

) —ke —ks
Relation Between P and P

This is described by equation (C13).
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SYMBOLS

Chordwise aerodynamic matrix for aerodynamic modes
Damping matrix

Coriolis acceleration coefficient matrix

Matrix of modal pressure coefficients, constants
Chord

Transformation matrix

Structural damping

Chordwise weighting matrix

Y=y

Stiffness matrix

Circumferential harmonic index, reduced frequency
Semichord

Mass matrix, cascade relative inflow Mach number
Centripetal acceleration coefficient matrik
Number of blades on turbosystem

n,HL cyclic sector

Load vector

Aerodynamic coefficient matrix for structural modes
Transformation matrix

Time

Physical degrees of freedom

Cascade relative inflow velocity

Virtual work, weighting matrix

Strip width, downwash velocity

Chord local coordinates
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Inclination angle of turbosystem axis of rotation

i Aerodynamic modal coordinates
A Sweep angle
P Stagger angle
% Structural modal coordinates
7 Mass density of flow
Y Inter-blade phase angle
@ Chordwise aerodynamic modes
& Structural modes
Y Pressure distribution in aerodynamic modes
Q Rotational speed
w Circular frequency
Subscripts
g Grid point on chord, chordwise aerodynamic mode
i Structural mode
P Cascade theory pressure point
S Chord s
Superscripts
B,b Basic coordinate system
G,g Global coordinate system
K Independent solution set in 'symmetric components'
L,1 Local coordinate system
n nth.cyclic sector , normal to chord
s Chord §
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Fourier coefficients ('symmetric components')
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